
AD-M69 930 YIELD RND PERFORMANCE ENHANCEMENT THROUGH REDUNDANCY IN 11
I VLSI AND HSI MULT..(U) MASSACHUSETTS UNIV AMHERST DEPT
I OF ELECTRICAL AND COMPUTER EN. I KOREN ET AL. 1996

UNCLSSIFIEDFOSR-989RR-4-0905 9-SF/ 9/2 NL

EE17.h~hE

1-0w

7 1 -17 -7 -'v ,W7 y N

A D-Al~ 69 90REPORT DOCUMENTATION PAGE
AD -A 69 9 IOLRESTRICTIVE MARKINGS

3& SECURITY CLASIFICATION AUTHORITY 3. DISTRIIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

.O~Ci.AMIuCATION/O WGRADING SCHEDULE unlimited.

MERORMNG ORGANIZATION REPORT NUMEER(SI S. MONITORING ORGANIZATION REPORT NUMBeR(SI

AFOSR.TR. 86-0389
S AMS OF PERFORMING ORGANIZATION ILb OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
University of Massachusetts OI pidbe
at Amherst IAir Force Office of Scientific Research

6. ADORESS1 (City. Simon ,g ZIP Codel . 7. ADDRSS (CRY. Simon a" ZIP Coode)

Dept ofEletricl &ComuterEngneeing Directorate of Mathematical & Information
Dept.l of Elcrcl&mueEngineering Sciences, Boiling AFB DC 20332-6448

* a& NAME OF FUNDINGJ/SPONSORIINO OFFICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (IfapBig)

AFOSR NMAFOSR-84-0052
OLB ADDRES8 (ItiY. Sin amid ZIP Code) 1G. SOURCE OF FUNDING Mae.

PROGRAM IPROJECT TASK IWORK IM0IT
E LEMENT NO. "a. t Oo.

* Bolling AFB DC 20332-6448 61102F I2304 A2
* 1. TITLE flaciftdo bWarif CmRtoio

"YIELD AND PERFORMANCE ENHANCEMENT THROUGH REDUNDANCY IN VLSI AND WSI MULTI-PRECESSOR SYST IS'
12. PSIRONAL AUTHOR WI
Dr. s Israel Koren and Dhiraj K. Pradhan

13& TYPE 0! REP1ORT I13. TIME COVERED 14. *ATE OF REPOfT e. X46. Dkoy) IL PAGE COUNT

* eJ~£~C P ROM ___ TO _ __35 + dia raig5
IS. SUPPLEMENTARY NOTATION

17. COSATI CODES I&SUBJECT TERMS ICandw anmaivwfif ftee..eav WoolIdeniffy 67 61"ot amlr)

FIELD GROUP SUB. GR.

1S. ABTRACT V CoRME.. oft r*WMe. Af OWemei and kkadlY 6V Bl8ch Itumb~r)

New challenges have been brought to fault-tolerant computing and pro-

cessor architecture research because of developments in IC technology. One

emergent area is development of architectures, built by interconnecting a
LAJ
-- J large number of processing elements on a single chip or wafer. Two imporQ

.thiLA.
-f tant areas, related to such VLSI processor arrays, are the focus ofthii

paper; they are fault-tolerance, and yield improvement techniques.

iDOSTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASIFIcAT1*

UNCLASSIP1EO/UNLIMITSD 91 SAME At APT. 03 OTIC USERS 0 UNCLASSIFIEDV
22&. NAME OF RE1SPONSIBLE.1 INDIVIDUAL 22b6 TELEPHONE10 NUMBER .OFFICE SYMBOL

VOmclade A me Co&e)

dCaptain John P. Thomas MOO 1(202) 767- 5026 NM

DO FORM 1473,93 APR EDITION OF I JAN 73 IS OIISOLEITE. . UNCLASSIFIED OFTlSPG

SECURITY CLASSIFICATIONOFTISPG

• 'N.NCLAS S I Z.D

SECURITY CLA.SSIP CATION O TMIS PA%,E

Fault-tolerance in these VLSI processor arrays is of real practical

significance; it provides for much-needed reliability improvement. There-

fore, we first describe the underlying concepts of fault-tolerance at work

in these multi-processor systems. These precepts are useful to then present

certain techniques that will incorporate fault-tolerance integrally into

the design. In the second part of the paper we discuss models that evalu-

ate how yield enhancement and reliability improvement may be achieved by

certain fault-tolerant techniques.

5'.trIbUt t "l/ --
t¥ Codes

j :, t i Special

I

UNCLASSIFIED
SECURITY CLASSIPICATION OF TMIS PAGE

.: " . ", . . , - ... , .,, . .

YIELD AND PERFORMANCE ENHANCEMENT THROUGH REDUNDANCY

IN VLSI AND WSI MULTI-PROCESSOR SYSTEMS +

Israel Koren * and Dhiraj K. Pradhan **

ABSTRACT

New challenges have been brought to fault-tolerant computing and pro-

cessor architecture research because of developments in IC technology. One

emergent area is development of architectures, built by interconnecting a

large number of processing elements on a single chip or wafer. Two impor-

tant areas, related to such VLSI processor arrays, are the focus of this

paper; they are fault-tolerance, and yield improvement techniques.

Fault-tolerance in these VLSI processor arrays is of real practical

significance; it provides for much-needed reliability improvement. There-

fore, we first describe the underlying concepts of fault-tolerance at work

in these multi-processor systems. These precepts are useful to then present

certain techniques that will incorporate fault-tolerance integrally into

the design. In the second part of the paper we discuss models that evalu-

ate how yield enhancement and reliability improvement may be achieved by

certain fault-tolerant techniques.

Index Terms - Yield enhancement, reliability, computational availability,

processor arrays, fault-tolerance, redundancy, diagnosis, reconfiguration.

This work was supported in part by AFOSR contract 84-0052.
I. Koren is with the Departments of Electrical Engineering and Computer

Science, Technion - Israel Institute of Technology, Haifa 32000, Israel.
D. K. Pradhan is with the Dept. of Electrical and Computer Engineering,

University of Massachusetts, Amherst, MA 01003.
Approved for public release
distribution unlimited.

+ + + • Z • , S ** ** ** ** * . -

AIR Fn7E r O!FCE OF SCT-NTFIC RESARCIi (APSC)
Na-TCE F 2?.NSMITTAL TO DTIC
2 This technicsl report has been reviewed and Is
rqproved fo:, urhblio relose IAW APR 190-12.
T'stribution is unlimited.

I~~~ ~ ~ ~ . INTODUTIO " * MWJ E?

I. INTRODUCTION Chief, Teohnioai Information Division

The evolution of fifth generation computers [4] makes it clear that

traditional sequential computer architecture will soon see a striking

departure, overtaken by newer architectures which use multiple processors

as the state-of-the-art. This particular thrust is enhanced by develop-

ments in IC technology [30], creating a widening gap between the technolog-

ical advances and the architectural capabilities that can exploit these

fully.

As a result, much recent research has focused on these new architec-

tural innovations, especially those created by interconnecting multiple

r processing elements (PEs). One important class of such architectures is

VLSI systems that interconnect a very large number of simple processing

cells, all on a single chip or wafer. Concerns about fault-tolerance in

VLSI-based systems stem from the two key factors of reliability and yield

enhancements. Low yield is a problem of increasing significance as circuit

density grows. One solution suggests improvement of the manufacturing and

testing processes, to minimize manufacturing faults. However, this approach

is not only very costly, but also quite difficult to implement, with the

increasing number of components that can be placed on one chip. But incor-

porating redundancy for fault-tolerance does provide a very practical solu-

tion to the low yield problem. This has been demonstrated in practice for

high density memory chips and should be extended to other types of VLSI

circuits. In general, yield may be enhanced because the circuit can be

accepted, in spite of some manufacturing defects, by means of restructur-

ing, as opposed to having to discard the faulty chip. Achieving reliable

operation also becomes increasingly difficult with the growing number of

• ° •

interconnected elements and hence, the increased likelihood that faults can

occur.

In the design of such fault-tolerant systems, a major architectural

consideration becomes the system interconnection. Consequently, one goal of

this work is the study of sound fault-tolerant network architectures that

can be well-utilized in a wide range of VLSI-based systems. Also, of

importance are the related problems of testing, diagnosis, and reconfigura-

tion.

VLSI technology has many promising applications, including the design

of special-purpose processors [71, for use as an interconnected array of

processing cells on a single chip, as well as the design of super-computers

that use wafer-scale technology. These two factors, in conjunction, pos-

sess the potential of major innovations in computer architecture.

One principal aspect of such architectures is how fault-tolerance can

well be incorporated into such systems. Included here is the problem of the

placement of redundant cells so as to achieve the elements of fault-

tolerance, yield enhancement, testability and reconfigurability.

II. FAULT-TOLERANCE IN VLSI AND WSI

Two VLSI-based areas in which important innovations are likely to

occur are in the wafer-scale integrated architectures, and in the sin~le-

chip/multi-processing element architectures. The former has the potential

for a major breakthrough with its ability to realize a complete multipro-

cessing system on a single wafer. This will eliminate the expensive steps

. required to dice the wafer into individual chips and bond their pads to

external pins. In addition, internal connections between chips on the same

__.*-*S*% J* * ~::

4

wafer are more reliable and have a smaller propagation delay than external

connections. The latter does make it possible to build a high-speed pro-

cessor on a single chip, designed by interconnecting a large number of sim-

ple PEn. These architectures already have captured the imagination of

several computer manufacturers and researchers alike.

As mentioned earlier, the motivation for incorporating fault-tolerance

(redundancy) is two fold: yield enhancement and reliability improvement.

Both are achieved by restructuring the links so as to isolate the faulty

element(s). Various link technologies are available now which allow such

restructurability. Included among these are the laser-formed links, MOS

links (tristate logic and transistors), fusible links, and so on.

Restructuring capability is either static or dynamic in type. Which

type is selected depends on whether restructuring should be performed only

once after manufacturing, or an unlimited number of times, as may be

required, throughout the operational life.

The issue of fault-tolerance in VLSI and WSI processing arrays has

been the subject of recent studies, e.g., [8], [10], [18], [20], [26],

C38], [40], [41]. In these publications, various schemes have been proposed

that introduce fault-tolerance into the architecture of processor arrays.

Because fault-tolerance is an involved subject, completely different

schemes might be cost effective in different situations and for different

objective functions.

When evaluating a fault-tolerance strategy for multi-processor systems

we have to consider the following aspects:

,;, ; : , - "' "a"." - """." - " - """ -- "- -"-.."""-'"" -'.-"

(a) Types of failures to be handled and their probabilities of occurrence.

(b) The costs associated with failure occurrences.

(c) The applicable recovery methods.

(d) The amount of additional hardware needed.

(e) The system objective functions.

Fault-tolerance strategies can be designed to deal with two distinct

types of failures, namely, production defects and operational faults. In

the current technology, a relatively large number of defects is expected

when manufacturing a silicon wafer. Normally, all chips with production

flaws are discarded leading to a low yield (expected percentage of good

chips out of a wafer).

Operational faults (or just "faults") have in comparison a consider-

ably lower probability of occurrence, the difference of which may be in

orders of magnitude. Improvements in the solid-state technology and matu-

rity of the fabrication processes have reduced the failure rate of a single

component within a VLSI chip. However, the exponential increase in the

component-count per VLSI chip has more than offset the increase in relia-

bility of a single component. Thus, operational faults cannot be ignored

although they have a substantially lower probability of occurrence compared

to production defects. Consequently, a fault-tolerance strategy that

enables the system to continue processing, even in the presence of opera-

tional faults, can be beneficial.

The two types of failures, manufacturing defects and operational

faults, also differ in the costs associated with them. Defects are tested

for before the ICs are assembled into a system and therefore, they

,, ?*% / ~ ~ . % 5 % % ~ t

6

contribute only to the production costs of the ICs. In contrast, faults

occur after the system has been assembled and is already operational.

Hence, their impact is on the system's operation and their damage might be

substantial, especially in systems used for critical real time applica-

tions. Clearly, a method which is cost-effective for handling defects is

not necessarily cost-effective for handling operational faults, and vice

versa.

For both types of failures in VLSI, a repair operation is impossible

and the best one can do is to somehow avoid the use of the faulty part by

restructuring the system. This implies that in the wafer (in the case of

defects) or in the assembled system (in the case of faults) there are other

operational parts which are either identical to the faulty one or that can

fulfill the same tasks.

Restructuring can be static or dynamic. Static restructuring schemes

are suitable only to avoid the use of parts with production flaws. Dynamic

restructuring is required during the normal system operation, when faulty

parts have to be restructured out of the system without human intervention.

Such a dynamic strategy might be appropriate to handle defects as well.

Static schemes tend to use comparatively less hardware but consume operator

time, while dynamic schemes are controlled internally by the system and

usually require extra circuitry.

Another aspect that has to be considered when evaluating the effec-

tiveness of a given fault-tolerance technique, is the required hardware

investment. The hardware added can be in the form of switching elements,

(e.g., [8], [38] and [41]) or redundancy in processors or communication

links (e.g., [10], [26]). When carrying out such an analysis we have to

7

take into account the following two parameters:

(1) The relative hardware complexity of processors, communication links

and switching elements (if they exist).

(2) The susceptibility to failures (manufacturing defects or operational

faults) of all the above-mentioned elements.

Processing elements are traditionally considered the most important

system resource; hence, achieving 100% utilization of them is many times

attempted. For example, in [8], [38] and [41] switching elements are added

between processors to assist in achieving this goal. In [10] and [26] con-

necting tracks are added on the wafer to be used in bypassing the defective

PEs when connecting the fault-free ones. However, the silicon area that

needs to be devoted to switching elements (e.g., switches capable of inter-

connecting 4 to 8 separate parallel busses [41]) or to additional communi-

cation links cannot be ignored. Consequently, such schemes might be benefi-

cial only for PEs which are substantially larger than the switches and the

additional links (e.g., [32]). Also, the addition of switching elements

and especially the longer interconnections between active processors result

in longer delays affecting the throughput of the system. To overcome this

performance penalty, it has been suggested in [25] to add registers for

bypassing faulty processors. The effect of this is to introduce extra

stages in the pipeline thus, increasing the latency of the pipeline without

reducing its throughput.

In the above mentioned schemes, one of the underlying assumptions is

that the extra circuitry (e.g., switching elements, communication links or

registers) are failure-free and only processors can fail. However, larger

silicon areas devoted to those elements increase their susceptibility to

defects or faults; as a result, the above-mentioned assumption might not be

valid any more.

In VLSI, the silicon area devoted to a system element might be more

important than its hardware complexity. Consequently, 100% utilization of

PEs is not necessarily the major objective, especially if this requires

adding switches and/or communication links, which consume silicon real-

estate. In the new technology, processors will be the expendable com-

ponents, as gates were in SSI or small logic networks in LSI.

This may justify different fault-tolerance schemes which do not

attempt to achieve 100% utilization of the fault-free processors when the

array is restructured to avoid the use of faulty ones [131. Such schemes,

which give up the use of some fault-free PEs upon restructuring, can be

attractive for operational faults (which are few in number). Here, the

lack of additional hardware (switches or links) allows a larger number of

PEs to fit into the same chip area, thereby offsetting the penalty of giv-

ing up the use of fault-free PEs when restructuring.

The reported research in this area of fault-tolerant architectures,

although a significant beginning, is limited in the following aspects:

(a) Most of the proposed architectures have been developed on an ad-hoc

basis. No well-established criterion or framework yet exists for the

formulation of these architectures.

(b) As indicated above, redundancy can be used for both yield enhancement

and reliability improvement. Recently, development of models to

evaluate how can a given redundancy be shared to achieve the best com-

bined improvement of yield and performance has begun [211 but more

. .. . * **l* .* * ~ ; .

W1_jkW rr.P 'WJIp w ru p "l prw ri.]dW7~W r IM!x n ' U'S 5~ Wnp ' '!SrMA wn'r~WYVJ-1' WWI1'' -1-d -47W'~~,m. 'x.q

9

extensive work is still needed. Such models could be also used to

compare and evaluate different architectures.

(c) The testability and reconfigurability issues have seen very limited

treatment. Algorithms for testing, diagnosis and reconfiguration need

to be developed.

Ill. A TAXONOMY FOR MULTI-PROCESSOR ARCHITECTURES

Broadly, there are two types of interconnection architectures that are

of interest to VLSI processor array implementation. The first type is the

nearest neighbor interconnection which includes various mesh interconnec-

tions, illustrated in Fig. 1. The second type we refer to here as alge-

braic graph networks which includes networks such as binary n-cube, cube-

connected cycles, shuffle-exchange graph , shift-and-replace graph networks

and group graph networks. Examples of the latter are illustrated in Fig.

2. Like the mesh connection networks, these admit efficient execution of

certain algorithms. Also algebraic structure of some of these networks can

be exploited so as to realize asymptotically optimum VLSI-layouts.

In order to represent uniformly different types of such architectures,

using different types of processing nodes (processors with internal

switches and processors with external switches) and different types of

switches (switches used for routing and switches used for fault-detection

and reconfiguration), we present the following taxonomy. Generally, there

are two types of system nodes: nodes capable of only computation, and

nodes capable of both computing and switching for routing. In addition,

there are two types of switches, the conventional switches, capable of only

establishing connections, and fault-detecting switches, those that perform

10

the function of both fault-detection and reconfiguration. Different types

of architectures are delineated in Fig. 3. The advantage, generally, in

using external switches is that the computational space can be distinct

from the communication space which therefore, provides greater flexibility

for emulation of a variety of communication geometries. The disadvantage

of external switches, though, is that they require additional hardware sup-

port and occupy extra VLSI area.

Different types of architectures are illustrated in Fig. 3. First,

Fig. 3(a) illustrates an architecture where the PEs perform internally all

the switching necessary to establish connections. Fig. 3(b) represents an

architecture where all the connections are established by using external

switches. Such differences are best illustrated by using the following 5-

tuple representation of networks. Let N - < P, S, Ep, Es, Ep- s > denote

the network, where: P represents the set of PEs, S denotes the set of

switches, p denotes the set of direct processor-processor links, Es

denotes the set of direct switch-switch links and Ep-s denotes the set of

processor-switch links. Different architectures can be conveniently

categorized into the following four types, as shown below, where

represents the null set:

Type 1: < P, S - , E Es

This denotes the type of architecture shown in Fig. 3(a). Here, the

array contains only processing no

* part of the processor. The mesh connections considered in [18] is an exam-

ple of such an architecture.

. Type 2: < P, S, E p Est E >

. , . , E s , .p-s.

11

This denotes the type of architecture shown in Fig. 3(b) where all of

the configuration and communication functions are performed by switches

that are external to the processor. The CHIP architecture proposed by

Snyder [41] is an example of this type.

Type 3: < P, S, Ep, Es - 0, Ep-s >

Fig. 3(c) delineates such an architecture. Here, in addition to the

external switches, each processor has an internal switch which sets up the

connections between processors. The external switches are used to provide

the function of fault-detection through disagreement detection and subse-

quent switching out of the faulty processor, thus disconnecting it from the

network.

Type 4: < P, S, Ep, Es, Ep-s >

This denotes a type of architecture where all of the different types

of links are used. An example of such an architecture is illustrated in

Fig. 3(d). Here, a linear array of PEs is provided with external switch

connections which can be configured in four ways, as shown in Fig. U(a).

The switches in such an architecture have a dual purpose. First, they can

be used to provide multiple logical configurations such as binary tree in

addition to the linear array; thus, an application that requires both

linear array and binary tree can use this architecture as shown in Fig.

4(b). Secondly, the switches can be used to bypass the faulty elements as

shown in Fig. 4(c).

Thus as we see, these different categorizations encompass all of the

different possible architectures that can be conceived. Therefore, the

above taxonomy provides a convenient framework for both the analysis of

12

different architectures as well a for the conceptualization of new archi-

tectures.

There are two basic ways one can introduce fault-tolerance into these

arrays, the first approach would be to provide redundancy at each node so

that the node can be reconfigured internally in the event of a fault. For

example, consider a 9-node mesh connection shown in Fig. 5. If we assume

that the interconnects are highly reliable, one way to design this array so

that it will be fault-tolerant is to use two self-checking processors at

each node, as shown in Fig. 6. The function of the external switch is to

determine, in the event of a fault, which one of the two checkers is indi-

cating errors and then switch out the appropriate module.

However, if the interconnects cannot be assumed to be reliable, one

has then to provide redundancy by designing an array larger than the max-

imum size required for the applications. For example, consider the 4x4

array shown in Fig. 7 which is designed to support various applications

including the binary tree configuration shown in Fig 8(a). The mapping of

the binary tree onto the array, is depicted in Fig. 8(b). In this figure,

the mapped nodes of the binary tree are shown, along with the inactive com-

ponents, which are shown using dashed lines. Consider now that the active

node 6 becomes faulty. It can be easily seen that the network can no

longer admit the binary tree configuration, shown in Fig. 8(a). However,

should it be possible to execute the same application on a reduced binary

tree (perhaps with a degraded performance) such as the one shown in Fig. 9,

the application can still be supported by the faulty array, as demonstrated

below.

* .* . ** . ..[

1 %W r. Ir F N '-..-ry Is r w y

13

There are two different ways this can be achieved. First, the origi-

nal 4x4 array can be restructured into a smaller 3x3 array as shown in Fig.

10. This would require giving up the use of some processing nodes by turn-

ing them into connecting elements (CEs) [18]. Then, any application that

can be executed on a 3x3 array can be executed on this new (logical) 3x3

array. The second approach would be to map directly the application confi-

guration onto the faulty physical array. However, the latter approach can

be computationally complex [9]. Thus, depending on whether or not such

reduction is possible, the network may or may not be fault-tolerant, with

respect to this application.

Several important concepts emerge from the above discussion. Firstly,

a node or link can assume several distinct states. The following shows

various possible states of the node:

Node State

Faulty Fault-free

Partly Faulty

Completely Faulty Active Inactive

Processing Transmission

4 Here, the processing state of the node refers to that state in which

the node is assigned to perform some useful computational task.

.........................

14

On the other hand, a node in the transmission state is assigned to

perform only switching, so as to establish a path. Thuzs, a node in this

state does not perform any computations, except those which may be required

for routing, etc. For a link though, this distinction does not apply.

Accordingly, there are fewer states for a link, as shown below:

Switch/Link State

Faulty Fault-free

Active Inactive

The various possible state transitions are shown by the following

directed graph. Here, F,P,TA and I denote the faulty, processing,

transmission, active and inactive states, respectively. The arc labels, f

and ca, represent the transitions caused by fault, and change of applica-

tion, respectively.

f Co f

aC f

Secondly, the various reconfiguration processes can be conceptualized

through an abstraction of layers, formulated below:

Let the physical layer represent the topology which describes the intercon-

nection structure, along with the status of the nodes and links in the phy-

15

sical array. A node/link in the physical layer can be either in the

fault-free or faulty state.

Let an application layer represent that topology which is required to sup-

port a given application. Thus, in this layer, all of the nodes are pro-

cessing nodes; the links, active links.

Let the logical layer represent the topology which realizes a given appli-

cation layer on a given physical layer. Thus, a node in this layer is

either in the processing state or in the transmission state. All of the

links in the logical layer are in the active state.

For a given configuration, the above layers are related topologically,

as shown in Fig. 11. The nodes in the application layer are a subset of

the nodes in the corresponding logical layer and these are in turn a subset

of the nodes in the physical layer.

The following defines a set of fundamental problems of practical

importance:

,Problem 1: Given an application layer (a set of application layers) and the

physical array that admits these application(s), what is the minimum size

(number of nodes, silicon azea) of the physical layer that can admit the

applications(s) when t or fewer component fail?

Problem 2: Given the geometrical structure(s) of an application layer (set

of application layers), how can a physical array be designed so that it can

provide "efficient" fault-tolerant realization of the application(s)? The

term efficient may be defined in terms of factors such as size of phyiinal

array, length of communication delay between adjacent application nodes,

ease of testing and diagnosis, reconfigurability, etc.

-w. - b AJ~~

16

The above problems need to be studied in the context of more general

and flexible use of redundancy. For example, judicious use of node-level

redundancy may offset the need for massive redundancy at the system level.

Also, broader use of switches as implied by Type 3 and Type 4 architectures

may yield new system architectures - architectures that provide more effi-

cient utilization of redundancy.

These above discussions are also applicable to the second type of net-

works, the algebraic networks. For example, consider the shift-and-replace

graph networks proposed recently in E391 as a candidate for VLSI processor

networks. Such an 8-node network is shown in Fig. 12(a). This network is

capable of emulating various useful logical structures such as the linear

array, binary tree, shuffle and the shuffle-exchange communication struc-

tures, as shown in Fig. 12(b). More importantly, this algebraic network

can emulate structures such as the linear array and binary tree, in spite

of a fault. For example, consider the link connecting nodes 1 and 2 becom-

ing faulty. In this case, the networks can still be restructured both as a

linear array and as a binary tree, as shown in Fig. 13. Similarly, the

network is also capable of emulating these structures in spite of any sin-

gle node failures.

It may also be noted that networks such as the binary n-cube and the

cube-connected cycles provide some interesting fault-tolerant reconfigura-

tion capabilities. For example, consider a 4-cube of 16 nodes, shown in

Fig. 14(a). In the event of a fault, one can degrade this to a 3-cube of 8

nodes, as illustrated in Fig. 14(a). However, this would require giving up

the use of seven good nodes. Alternatively, one can partition the 4-cube

into 4 subnetworks of 2-cubes. Assuming that the problem can be divided

.1J.'fd

17

into subproblems that can be executed on 2-cubes, one can use 3 of these,

as shown in Fig. 14(b). This would necessitate giving up the use of only 3

good nodes. It is obvious that the fault-tolerance of algebraic networks

can be studied in the context of VLSI processor arrays.

IV. TESTING AND RECONFIGURATION STRATEGIES

Central to the success of any fault-tolerance scheme is the formula-

tion of effective testing and reconfiguration strategies. Basically there

are two different approaches to diagnosis and recovery: centralized and

distributed. In a centralized procedure, one may assume an external unit

which is responsible for initiating testing and reconfiguration. In a dis-

tributed procedure, the PEs, themselves, are responsible for performing

periodic testing and reconfiguration.

The advantage of a centralized scheme is that no additional hardware

and software support have to be provided within each PE to allow testing

and reconfiguration. On the other hand, useful computation for the entire

array has to be interrupted so that testing can be performed. Addition-

ally, the complexity of the circuit and the limited access from the exter-

nal unit may not allow a centralized procedure to be used. The advantage

of distributed testing, on the other hand, is that since each processor can

perform testing in an asynchronous mode, the testing can be interleaved

with computation, thus not necessarily requiring a complete interruption of

all useful computation. Moreover, the distributed testing has the poten-

tial for better fault coverage because of the proximity of the testing unit

and the unit under test.

4I4

'? .. *i ¢k "- , . . ,.:'.;..; 1,,, ** ". "." .' : . . .%

18

From the above discussion, it is apparent that a distributed procedure

must strive to make the testing and reconfiguration task local to each

node. This way, the testing and reconfiguration can be made transparent to

most of the network. However, performing these tasks locally requires

extra hardware and software support at each node and a distributed pro-

cedure must try to minimize it. On the other hand, a centralized procedure

must attempt to minimize the number of tests that will be required when no

faults are present. Interruption of useful computation will be this way

minimized.

In the following, we present an example for a distributed testing pro-

cedure in which every PE tests all its immediate neighbors. In this way,

faulty PEs and faulty connections between PEs are detected by the adjacent

PEs. The procedure first partitions all the PEs into m disjoint testing

groups, To, T1,..., Tm-1. After this partitioning, there are m phases of

testing, where at phase I (0 < i < m-1), the members of Ti test all

their neighbors.

The partition is such that (1) every PE is surrounded by PEs of other

groups, and (2) no PE has two neighbors belonging to the same group. These

two properties guarantee that for every I, no two members of Ti will

test each other, or try simultaneously to test a third PE. It can easily

be shown that five (seven) groups are both necessary and sufficient for a

partition with the above properties in the case of a square array [18]

(hexagonal array [12]). The testing group numbers assigned to each PE in a

square array and an hexagonal array may be calculated from its array

indices (p,q) by (p+2q) mod 5 and (p+2q) mod 7 , respectively.

19

When all the m phases of the testing procedure have been completed,

each and every PE knows the status (faulty/not-faulty) of all its immediate

neighbors and the corresponding connecting links. There is no difference

if the actual fault is In the neighboring PE proper, or in the link leading

to it.

Moreover, the status of a faulty PE or link will be known only to its

neighboring PEs. This locally stored information is sufficient for a dis-

tributed reconfiguration algorithm (e.g., [18]) that will follow the test-

" ing procedure. Thus, it may be seen that the above distributed testing

procedure does not require any passing of test results, as required in

other, more general, distributed diagnosis algorithms (e.g., C22]), by tak-

ing advantage of the regularity of the VLSI array.

It may be noted that the above algorithm will also work with simple

comparison testing. In this type of testing, there are no tests to be

applied from one processor to the other. Simply, what is required is that

two neighboring processors, I and J, exchange the results of certain

predetermined identical computation. In the event that there is a

mismatch, processor i can assume j is faulty and processor j can assume i

is faulty.

In summary, a key feature of the above distributed testing procedure

is that the testing and subsequent reconfiguration are transparent to all

the nodes in the network except for those that are adjacent to the faulty

node. The main disadvantage of distributed procedures is however, the

extra hardware and software support that each PE must provide for testing

and reconfiguration. This may be difficult to accomplish in processing

arrays consisting of very small and simple PEs.

20

As discussed earlier, centralized testing may have to interrupt all

the computations in the array. Since it is assumed that the testing is

done periodically, it is desirable that the number of tests and the testing

time should be minimized when there are no faults. The testing time should

be proportionate to the number of faults; thus a fault-free array would

require a minimum number of tests with the number of tests increasing with

the number of faults. In [31], a possible diagnosis strategy was suggested

that makes the testing very simple in the absence of any fault; the testing

becomes progressively more time-consuming with the number of faults. Since

most of the time no faults are present, the performance penalty due to

interruption for testing can be minimal. This is illustrated further

below.

In Fig. 15 possible testing graphs for a 5*5 end-around mesh (the

boundary nodes are also adjacent) are shown. The darkened boxes represent

nodes already diagnosed as being faulty. The edges with arrows indicate

those communication edges included in the testing graph. The arrows point

from the tester to the tested unit. Algorithm SELF2 [22] would require a

graph with 75 directed edges to diagnose up to three faults. The strategy

presented in [31] never employs more than 25 periodic tests.

Fig. 15(a) indicates a possible initial testing graph. Since the

end-around mesh is node-symmetric, the first fault may always be viewed as

occurring in the center node; and the same testing graph may then be used

after the first fault is diagnosed. There must exist two adjacent fault-

free rows (also columns) after no more than two faults have occurred. This

ensures the graph may be viewed with the faults restricted to the interior,

i.e., with the border intact.

21

Figures 15(b) through 15(f) illustrate five possible cases for the

fault locations. In each instance the interior is shown to include a Ham-

iltonian path. As proved in 131], at least one fault amongst the nodes in

the loop along the border may be diagnosed. If all are fault-free, then

the first faulty node along the path through the interior may be diagnosed.

Let E d,p I denote the closed interval from c to P. Let the nodes in

the mesh be represented by pairs <a,b> where a, b E C1,5] with a indicating

the row and b indicating the column. Let the first fault, without loss of

generality, be at node <3,3>. By symmetry we need only to consider the

second fault occurring at (1) <2,4>, (2) <2,3>, (3) <1,5>, (4) <1,4>, or

(5) <1,3>. These possibilities (1) through (5) correspond to the illustra-

tions in Figures 15(b) through 15(f), respectively. Consequently, Fig. 15

gives testing graphs for all unique fault patterns in this case. Precise

necessary and sufficient conditions for such a dynamic testing of general

systems are given in C31].

V. ANALYTICAL MODELS FOR EVALUATION OF YIELD AND PERFORMANCE

The introduction of fault-tolerance into the architecture of VLSI-

based multiprocessor systems has two objectives. One is yield enhancement,

the other is improvement of performance. To achieve these two goals,

redundancy has to be introduced either at the basic element level or/and at

the system level. In the latter case, redundant elements can be added to

the original design and they will be used to replace defective ones after

- the manufacturing process has been completed. Such a replacement is done

by reconfiguring the system using either a static scheme or a dynamic one.

Once this procedure is completed the system goes into operation and it has

to handle from this point on only operational faults. This can be done

22

using a dynamic reconfiguration scheme which might be different from the

one used for defects. At this point the fault-tolerance capacity of the

system is used to improve its performance. First, the remaining redundant

elements (if any) can be used as spares and then, the system is gracefully

degraded. We conclude therefore, that the same redundancy can be used for

yield enhancement and for performance improvement as well.

We present in this section an analytical model that enables us to con-

sider both manufacturing defects and operational faults. This model allows

us to analyze the effectiveness of a given fault-tolerance technique in

increasing yield and improving performance, or find the tradeoff between

the two. It also enables us to compare various fault-tolerance techniques,

examine different system topologies and determine the optimal amount of

redundancy to be added.

To formulate such a model an expression for the yield of a fault-

tolerant multiprocessor chip is needed. Such expressions have been

presented in [20] and [28]. A more general expression for the yield was

proposed in [21] and is presented in what follows.

The yield of any VLSI chip depends on the types of defects which may

occur during the manufacturing process and their distribution. The major-

Ity of fabrication defects can be classified as random spot defects [3]

caused by minute particles deposited on the wafer. Hence, each of them may

affect only a single element (like a processor, bus, etc.) in a multipro-

cessor chip.

For the statistics of the fabrication defects we can adopt one of the

models suggested in the literature like Poisson, general negative binomial,

binomial statistics and others. Under proper assumptions each one of these

23

statistics can be used and the "correct" one is the one that fits the data

best [43]. One model which has been shown to agree with experimental

results, is the generalized negative binomial distribution [42]. its

attractiveness stems from the fact that it does not assume that all defects

are evenly distributed throughout the wafer but rather allows defects to

cluster. The probability of having x defects on a chip for this distribu-

tion is,

r[X - x[} (1)

where> is the average number of defects per chip and c is the defect clus-

tering parameter. A low value of d can be used to model severe clustering

of defects on a wafer, while for ->w we obtain the Poisson distribution.

This two-parameter distribution has a mean of) and a variance of

(+ (/). The mean and variance of data obtained from many wafer sam-

ples are used to estimate these two paramecers.

For non-redundant chips the yield is the probability of having zero

defects,

Y - Pr{X-O) u [() (2)

Suppose now that redundancy is added to a chip so that s defective

elements can be tolerated (i.e., replaced by good spares), and denote by

N the total number of elements (e.g., processors). Then, the chip is

acceptable with any number of manufacturing defects as long as all of them

.4

% . = % ~* ~ % ~ \ ***** *. *- *

24

are restricted to at most s elements. The yield, which is now the proba-

bility of a chip being acceptable, is given by,

00
Y - I Pr(There are x defects in at most s elements 1 (3)

X-O

If we denote,

Q(N) - Pr{ x defects are distributed into exactly i out

Xi

of N elements / There are x defects }

Then,

00 5
y I Q(N) * Pr{There are x manufacturing defects in the chip}(4)

X-O i.O X,i

The last term in the above equation is Pr{X-x} and we may substitute

it by equation (1) or a similar expression for any other defect distribu-

tion (e.g., Bose-Einstein statistics [28]).

The probability Q(N) is given by,

x, I

Q(N)N ri-kix (5)
x ko (- 1)k (k,i-k,N-i) LNI

N
where k,-k,N-i) is the multinomial coefficient.

In the previous discussion we have assumed that only one type of ele-

ments can have defects. If two types of elements (e.g., processors and

communication busses) can have defects, then the probability of having xI

defects in type 1 elements and x2 defects in type 2 elements is,

PrfX.X1'1 , X2-x2} . Pr[XlXl} * Pr{X 2 x2} (6)

since the probability of defects in different types of elements are

.%

-. *..

25

independent [43].

Suppose now that sl defective elements of type 1 and s2 defective ele-

ments of type 2, out of N1 and N2 elements, respectively, can be tolerated.

Then, the yield is given by,

00 00 Sl (N) s2 Q(N2)
Y - I I Z X1, 1 " x 2, 2 * Pr{X1ix1,X 2 .x2) (7)

X. 0 X2 - 0 i1.0 i 2 2 0

Ss I and 32 are not necessarily independent; for example, if less than

s1 elements of type 1 are defective we may be able to tolerate more than s2
defective elements of type 2. Equation (7) will have in this case to be

changed accordingly.

Equation (7) as well as equation (4) can be multiplied by a "bypass

coverage probability" [28]. This is the conditional probability that an

element can be bypassed given that it is faulty. By adding this probabil-

ity one may consider less than perfect procedures for locating faulty ele-

ments and reconfiguring them out of the system.

In the following we adopt the commonly used assumption that only one

type of elements can fail (usually, the more complex one, e.g., the proces-

sors). The general case in which all system elements can have defects in

them, can be analyzed based on expressions similar to (7).

To tolerate s defective elements, at least s redundant ones are

needed. However, the exact amount of required redundancy depends upon the

* specific static or dynamic reconfiguration scheme used. This in turn,

determines the increase in chip area which must be taken into account when

*calculating the yield, since a larger number of defects is expected now.

1Z

26

Let Ys denote the increase in chip area (due to the addition of redun-

dancy) needed to tolerate these s faulty elements. The factor Y. is

called the redundancy factor C20] and it depends on the system topology and

the reconfiguration strategy. To take into account the increased number of

expected defects, we have to substitute . (the average number of defects

per chip) by Y s in equation (1).

In addition, any increase in chip area will reduce the number of chips

that will fit into the same wafer. Hence, instead of calculating the yield

which is the probability that a single chip is acceptable, one has to cal-

culate the expected number of acceptable chips out of a given wafer. This

expression, called equivalent yield in C20], is obtained from equation (4)

after dividing it by Ys. By comparing the equivalent yield of the fault-

tolerant chip and tne yield of the simplex one, we can determine whether it

is beneficial when yield is considered, to have built-in fault-tolerance

and how many redundant elements should we add. This comparison can be done

for various topologies of multi-processors and different reconfiguration

algorithms.

An analysis along these lines has been done in C28] and in [20]. In

both it has been observed that the improvement in yield saturates above

some amount of redundancy. This indicates that there is an optimal amount

of redundancy that should be added.

Chips having s or less defects will be accepted and then reconfig-

ured to avoid the use of the defective elements. If the number of defects

was less than s , the chip has some "residual" redundancy which can then

be used for performance enhancement, i.e., handle operational faults which

occur during the life time of the system. Even chips in which no redundant

N - -'Noll- '- 'A -,.-..-

r'" N_ ~WM w "VWV9V u~IW - E.% % I-L!N -! E M U1 E Kg -- V '2-.. 7~ '- -V -U- W. 7' - -

27

elements are left when leaving the manufacturing site (i.e., there were

originally s defects in the chip), can still benefit from the fault-

tolerance capability.

To evaluate the effectiveness of the "residual" redundancy and the

fault-tolerance capacity of the chip we have to select some performance

measures and we need a model that will allow us to calculate these meas-

ures. A natural choice for this purpose is a Markov model like the one

employed by [20] and [6].

Suppose first that the same reconfiguration scheme is used to avoid

manufacturing defects and operational faults as well. This assumption

implies that a dynamic scheme is employed since no static scheme can be

used while the system is in operation. The suggested Markov model for this

case is depicted in Figure 16, where (F) is the system failure state and

(J) is a state at which the system is operational in the presence of j

faulty elements. A transition from state (J) to state (F) takes place when

an additional node becomes faulty and the system fails to recover from its

effect. The corresponding transition rate is denoted by cf. Similarly,

C(+* is the transition rate from state (j) to state (j+). These transi-

tion rates depend upon the failure rates of the system's elements and the

coverage probability [20].

State (o) in Figure 16 is the initial state of the system if no

defects occurred while the chip has been manufactured. If there were I

defective elements (o < i < s) then (i) will be the initial state. Let

* a i denote the probability of this event [21],

28

a, Q(N) * Pr{X-xl (8)

X-O

Using ai we can calculate the yield as

s

Y I a1 (9)
i-o

State (s~m) in Figure 16 is a terminal state E20] (i.e., a state from

which the only transition possible is to the system failure state (F)),

where m is the largest number of faulty elements that the system can

tolerate if no redundant elements were left when the system went into

operation.

Let Pi(t) - Pr{ The system is in state (J) at time t /

The system was initially in state (i)

i 0 O,1,...,s; J - i,i+1,...,sm

with Pi(O)-1 and P (O)-O for J>i.

The Markov model in Figure 16 is described then by the following dif-

ferential equations:

dP (t) (0
01tt)

______ - - djpi(t) + d iI Pi1 (t) (1d dt

where j- i 7,i 2,...,s+m and

The solution of equations (10) and (11) under the condition

29

dj 0 dk for all (k) 0 (j)

which is satisfied in most practical cases, is

- tut

pi(t) - I l i+ 2 ... _, e
u-- (d vI_ u(u)

(12)

V-i
vou

and

Pi(t) - edt (13)

For the Markov model shown in Figure 16 we can calculate several per-

formance measures like Reliability, Performability, Computational availa-

bility and Area utilization [20]. Let Ri(t) (0 < i < s) denote the

reliability of a system (i.e., the probability that it operates correctly

in the time interval [o,t]) which had i defects during the manufacturing

pr ;cess. This reliability can be calculated from the above Markov model as

follows,

s~m
Ri(t) . + Pi(t) (14)

jaii

We may then define and compute

R(t) - 2. [ai Ri(t) (15)

Y i-O

as the average reliability of a system having s or le-s defects when

manufactured. This average reliability can then be compared to Rs(t) which

is the reliability of a system with no redundancy left from the manufactur-

ing step. If we set s-0 then Ro(t) is the reliability of the system if

only perfect chips (with no defects) are accepted.

30

Similarly, we can define and calculate the computational availability

Ai(t) (the expected available computational capacity) and area utilization
C

measure Ui(t). The latter takes into account the additional area needed

when fault-tolerance is introduced into the system, and is defined in the

following way,

Computational Availability Ac(t)
Ui(t) " Chip area increase Ys

The expression for the above introduced computational availability

measure is,

Ai(t) - s-m cjpi(t) (16)
c JEi

where cj is the computational capacity of the system in state (J) [20],

expressed for example in instructions per time unit. The computational

capacity depends mainly on the number of processors available for computa-

tion in state (j). This number is at most N-j processors (where N is the

number of processors in the fault-free system), and is determined by the

reconfiguration strategy. In addition, cj depends on the current system

structure and application since not all processors are utilized in every

possible structure or application.

Other performance measures, like mean time to failure, can also be

calculated. For example, let Ti denote the mean time to failure of a sys-

*tem which was initially in state I, then

0o
T - Ri(t) dt (17)

6J

A N

31

The average mean time to failure can be defined similarly to equation (15).

This model can be extended in two directions in order to make it more

general and more practical. One is to include two or more types of system

elements that can fail (during manufacturing or later on) like communica-

tion busses, switches etc. The second one is to allow the use of one recon-

figuration scheme to handle defects and a different one to handle opera-

tional faults. Manufacturing defects can be effectively handled using

static schemes like "laser programming" or electrically fusible links,

while operational faults are best handled by some dynamic reconfiguration

scheme. A static scheme for defects requires less silicon area on one hand

but consumes operator time on the other hand. A more general Markov model

with two different reconfiguration schemes will enable us to analyze the

effectiveness of various such schemes.

Using the method presented in [20] one can derive closed-form expres-

sions for the state probabilities and compute the yield and various perfor-

mance measures for different architectures.

, VI. CONCLUSIONS

Fault-tolerant architectures that use redundancy for yield and perfor-

mance improvement have been considered. We have presented a unified frame-

work through which existing architectures incorporating fault-tolerance can

be analyzed and new ones suggested.

Several problems related to testing and reconfiguration of these

arrays have been described. Both the distributed and centralized modes of

testing have been considered.

32

The last part of the paper is devoted to the presentation of analyti-

cal models for the evaluation of reliability and yield improvement through

redundancy. The available redundancy on the chip or wafer is primarily

limited by the size of the chip or wafer hence, it is imperative to find a

method by which one can optimally share the available redundancy between

yield enhancement and performance improvement. The models discussed can be

used to study the effect of sharing available redundancy between these two

somewhat competing requirements.

-. %,* . ." •.*~ * * -. ..

33

VII. REFERENCES AND BIBLIOGRAPHY

[1] D.P. Agrawal, "Testing and Fault-tolerance of Multistage Interconnec-
tion Network," Computer, Vol.15, April 1982, pp.41-53.

[2] R.C. Aubusson and I. Catt, "Wafer-Scale Integration - a Fault-
Tolerant Procedure," IEEE J. Solid-State Circuits, Vol. SC-13, June
1978, pp.339-34 4.

[3] M.D. Beaudry, "Performance-Related Reliability Measures for Computing
Systems", IEEE Trans. on Computers, Vol. C-27, June 1978, pp. 540-
547.

[4] W.C. Carter, et al., "Cost Effectiveness of Self-Checking Computer

Design", Proc. of the 7th Symposium on Fault-Tolerant Computing, June
1977, pp. 117-123.

[5] R.P. Cenker et al., "A Fault-Tolerant 64K Dynamic Random-Access
Memory", IEEE Trans. on Electron Devices, Vol. ED-26, June 1979, pp.
853-860.

[6] J.A. Fortes and C.S. Raghavendra, "Dynamically Reconfigurable Fault-
Tolerant Array Processor," Proc. of the 14th Annual Symposium on
Fault-Tolerant Computing, June 1984, pp. 386-392.

[7] M.J. Foster and H.T. Kung, "The design of special-purpose VLSI
chips," Computer, Vol. 13, January 1980, pp. 26-40.

[8] D. S. Fussel and P. J. Varman, "Fault-Tolerant Wafer-Scale Architec-
tures for VLSI," Proc. of the 9-th Annual Symp. on Comp. Arch., May
1982.

[9] P.J. Varman and D.S. Fussel, "Realizing Fault-Tolerant Binary Trees
in VLSI," typescript, University of Texas at Austin, 1983.

[10] J.W. Greene and A. El Gamal, "Configuration of VLSI Arrays in the
Presence of Defects," Journal of the ACM, Vol. 31, No. 4, Oct. 1984,
pp. 694-717.

[11] D. Gordon, I. Koren, and G. M. Silberman, "Embedding Tree Structures
in VLSI Hexagonal Arrays," IEEE Trans. on Computers, Vol. C-33, Jan.
1984, pp.104-107.

C12] D. Gordon, I. Koren and G.M. Silberman, "Fault-Tolerance in VLSI Hex-
agonal Arrays," typescript, Dept. of Electrical Engineering, Techn-
ion, Haifa, Israel.

[13] J.P. Hayes, "A Graph Model for Fault-tolerant Computing System," IEEE
Trans. on Computers, Vol. 25, September 1974, pp. 875-884.

[14] L.S. Haynes, R.L. Lau, D.P. Siewiorek and D.W. Mizell, "A Survey of
Highly Parallel Computing," Computer, Vol. 15, January 1982, pp. 9-

24.

[15] K. Hedlund and L. Snyder, "Wafer Scale Integration of Configurable,
Highly Parallel (Chip) Processor," Proc. of the 1982 Internl. Conf.
on Parallel Processing, August 1982, pp. 262-265.

[16] E. Horowitz and A. Zorat, "The binary tree as an interconnection net-
work: Applications to Multiprocessor Systems and VLSI," IEEE Trans.

i ; 1 :, -... .. , -.-..-..--... -... ...

34

on Computers, Vol. C-30, April 1981, pp. 247-253.

[17] K.H.J. Huang and J.A. Abraham, "Low Cost Schemes for Fault-tolerance
in Matrix Operations with Array Processors," Proc. of the 12th Syru.
on Fault-Tolerant Computing, June 1982.

C18] I. Koren, "A Reconfigurable and Fault-tolerant VLSI Multiprocessor
Array," Proc. of the 8th Annual Symposium on Computer Architecture,
May 1981, pp. 425-441.

£19] I. Koren and G.M. Silberman, "A Direct Mapping of Algorithms onto
VLSI Processor Arrays Based on the Data Flow Approach," Proc. of the
1983 Internl. Conf. on Parallel Processing, August 1983, pp. 335-337.

£20] I. Koren and M.A. Breuer, "On Area and Yield Considerations for
Fault- Tolerant VLSI Processor Arrays," IEEE Trans. on Computers,
Vol. C-33, Jan. 1984, pp. 21-27.

£21] I. Koren and D.K. Pradhan, "Introducing Redundancy into VLSI Designs
for Yield and Performance Enhancement," Proc. of the 15th Annual Sym-
posium on Fault-Tolerant Computing, June 1985, pp. 330-335.

£22] J.G. Kuhl and S.M. Reddy, "Distributed Fault-Tolerance for Large Mul-
tiprocessor systems," Proc. of the 7th Symposium on Computer Archi-
tecture, May 1980, pp. 23-30.

[23] H.T. Kung, "The Structure of Parallel Algorithms," Advances in Com-
puters, Vol. 19, M.C. Yovits ed., Academic Press, NY, 1980, pp.-
112.

[24] H.T. Kung, "Why Systolic Arrays," Computer, Vol. 15, January 1982,
pp.37-46.

[25] H.T. Kung and M.S. Lam, "Fault-Tolerance and Two-Level Pipelining in
VLSI Systolic Arrays," Proc. of 1984 Conf. on Advanced Research in
VLSI, MIT, Jan. 1984, pp. 74-83.

[26] F.T. Leighton and C.E. Leiserson, "Wafer-Scale Integration of Sys-
tolic Arrays," IEEE Trans. on Computers, Vol. C-34, May 1985, pp.
448-461.

[27] A.D. Malony, "Regular Interconnection Networks," Tech. report CSD-
82-0825, Dept. of Computer Science, UCLA, 1982.

[28] T.E. Mangir and A. Avizienis, "Fault-Tolerant Design for VLSI:
Effects of Interconnect Requirements on Yield Improvements of VLSI
Designs," IEEE Trans. on Computers, Vol. C-31, July 1982, pp. 609-
615.

[29] F.B. Manning, "An Approach to Highly Integrated Computer-Maintained
Cellular Arrays," IEEE Trans. on Computers, Vol. C-26, June 1977,
pp.536-551.

[30] C. Mead and L. Conway, "Introduction to VLSI Systems," Addison-
Wesley, 1980.

[31] F.J. Meyer and D.K. Pradhan, "Dynamic Testing Strategy for Distri-
buted Systems," Proe. of the 15th Annual Symposium on Fault-Tolerant
Computing, June 1985, pp. 84-90.

J

..1 ,. -', "' s ' ,.T',f', ' s,., " _s :, - . - -'-' "-', ._v +'- _,. . - - ' ' ' ,. -- - _'.

35

C32] H. Mizrahi and I. Koren, "Evaluating the Cost-Effectiveness of
Switches in Processor Array Architectures," Proc. of the 1985

,* Internl. Conf. on Parallel Processing, August 1985.

[33] D.I. Moldovan, "On the Design of Algorithms for VLSI Systolic
Arrays," Proc. of IEEE, Vol. 71, No. 1, January 1983.

[34] D.K. Pradhan and J.J. Stiffler, "Error-Correcting Codes and Self-
checking Circuits," Computer, Vol. 13, March 1980, pp. 47-54.

[35] D.K. Pradhan and S.M. Reddy, "A Fault-tolerant Distributed Processor
Communication Architecture," IEEE Trans. on Computers, Vol. C-31,
September 1982, pp. 863-370.

[36] D.K. Pradhan, "Fault-tolerant Architectures for Multiprocessors and
VLSI Systems", Proc. of the 13th Symposium on Fault-Tolerant Comput-
ing, June 83.

[37] A. L. Rosenberg, "On Designing Fault-Tolerant Arrays of Processors,"
Tech. report CS-1982-14, Duke University, 1982.

[38] A. L. Rosenberg, "The Diogenes Approach to Testable Fault-Tolerant
Arrays of Processors," IEEE Trans. on Computers, Vol. C-32, Oct.
1983, pp. 902-910.

[39] M.R. Samatham and D.K. Pradhan, "A Multiprocessor Network Suitable
for Single-Chip VLSI Implementation," Proc. of the 11th Annual Syp
sium on Computer Architecture, May 1984, pp. 32 37.

[40] C.H. Sequin and R.M. Fujimoto, "X-Tree and Y-Component," in VLSI
Architectures, B. Randell and P.C. Treleaven, eds., Prentice-Hall,
1983, pp.299-326.

[41] L. Snyder, "Introduction to the Configurable Highly Parallel Com-
puter," Computer, Vol.15, January 1982, pp. 47-56.

[42] C.H. Stapper, A.N. McLaren and M. Dreckman, "Yield Model for Produc-
tivity Optimization of VLSI Memory Chips with Redundancy and Par-
tially Good Product," IBM J. Res., Dev., Vol. 24, No. 3, May 1980,
pp. 398-409.

[43] C.H. Stapper, F.M. Armstrong and K. SaJi, "Integrated Circuit Yield
Statistics," Proc. of IEEE, Vol. 71, April 1983, pp. 453-470.

[44] P.C. Treleaven and I.G. Lima, "Japan's Fifth-Generation Computer Sys-
tems," Computer, Vol. 15, August 82, pp. 79-88.

<%

(b)

Fig. I: Mesh connected arrays.

d

100 101

Shutffle-exchange Graph

01 0110

Shirt-and-replace Graph

0 2

6 7

44,

5 072 1-----

4 6 0

Cube Connected Cycles Cube Network

Fig. 2: Algebraic graph networks.

i .

Fig. 3(a): Type 1 architecture using internal switches.

Fig. 3(b): Type 2 architecture using external switches.

L -" -" .- |

Fig. 3(c): Type 3 architecture.

J Fig. 3(d): Type 4 architecture.

PP

r%

Fig. 4(a): Different switch configurations.

Fig. 4(b): Linear array and binary tree configurations.

Fig. 4(c): Bypassing faulty PE.

I-'

-. - - .**~*.. - - - . - ~r~z ~

A

.4

.4.

.1

.1

-, Fig. 5: A 9-node mesh connection.

*1

a,
.4.

Fig. 6: Fault-tolerant node.

ifPEPEP

W
EP EP

PEP EP

'IPE
PE PE PE

Fig. 7: A i4x4 mesh corir ion.

Fig. 8(a): A binary tree conftiguration.

L J L -i

Fig. 8(b): Mapping of the binary tree onto the mesh.

Fig. 9: Reduced binary tree.

CCE

CEE

PE PE PE

* Fig. 10: Reduced 3x3 array.

Physical layer

APPlicatiofl layer

Fig. 11: Topological relationships.

1 3
(001) (011)

4
(1001 (110)

Fig. 12(a): Shift and Replace graph.

0 1 2 4 B 7 3 5

Liner arrev network

000

001 O11

001 /
010 01100

0

100 101 110 ill

einrv tree network Perfct,Uiuftle network

01 110

Shufflexchange network

Fig. 12(b): Emulating logical structures on a Shift and Replace graph.

-M IN71-W..w h-1-r-q 7U rWW. 7WI

001Oi

000 010101IIl

>0
110

10 1i

100 101

0 1 .3 7 6 4 2 5 000 001 010 011
Linear array with link fault Binary trot with link fault

* Fig. 13: Emulations in the presence of a faulty link.

Fa l I

I-l

I

Fig. 14~(a): A binary ±1-cube partitioned Into two 3-cubes with faulty node 9

r 1 : r4 5 r j 12 13 1i

Fig. 14(b): Partitioned binary 4-cube into four 2-cubes with faulty node 9.

(d) (e)(f

Fig. 15: Various testing graphs for a 5*5 end-around mesh.

0 -4

* 0

L

0

0

.44.

LL- 4

00

-a. - ~. ~ -. S *. -....--... -- -. - - - - .-. '.. . -

.4.

S U .~r.-.v.-: *--*-V. ~ ~ * ~4.

